

COST REDUCTIONS FROM MULTI-MISSION SEQUENCING SOFTWARE

Laura Needels
Jet Propulsion Laboratory

4800 Oak Grove Drive
M/S 301-250D

Pasadena, CA 91109-8099
Laura.Needels@jpl.nasa.gov

Abstract

Sequencing software for deep space missions has
historically been one of the most critical parts of the ground
software used to communicate with and control the
spacecraft. At JPL, the sequencing software is responsible
for planning and creation of science and engineering
activities, checking command syntax, checking mission and
flight rules, and translating the commands into packets
which can be uplinked to the spacecraft. Significant effort
has been spent by earlier missions to ensure the integrity of
this software since errors in this area could cause the
spacecraft to enter fault protection or cause the loss of the
spacecraft.

Over the last several years, in an effort to reduce the costs
associated with sequencing software, the Advanced Multi-
Mission Operations System (AMMOS), part of the
Interplanetary Network Directorate (IND) at JPL has taken
two steps to reduce the cost of the sequencing software.
The first step was to develop a multi-mission form of
sequencing software. The second step was to develop a set
of automation scripts which permit of automation scripts
which permit 24x7 commanding with little human
intervention.

The development of the multi-mission software began
about 10 years ago. The architecture applied to the multi-
mission software is to develop it as two separate
components. One component, the multi-mission “core”
software provides, in a generic sense, the capability to
perform the functions needed in the sequencing software:
planning and scheduling events, checking flight rules, and
packetizing commands. The “core” software is then
“adapted” to a project specific mission. The “adaptation”
part of the software task involves providing the models for
activities needed for planning and scheduling, converting
the command list for the project into models that can be
used for sequence checking, coding project and mission
flight rules and the modeling needed to support them, and
developing project blocks for repetitive activities. The
AMMOS software has been or is currently being used by

Mars Global Surveyor, Cassini, Deep Space 1, Ulysses,
TOPEX, Mars Climate Orbiter. Mars Polar Lander, NEAR,
Stardust, Mars Odyssey, JASON, Genesis, CONTOUR,
Space InfraRed Telescope Facility, Mars Exploration
Rover, Deep Impact, and Mars Reconnaissance Orbiter.

By partitioning the sequencing software into a “core”
component and an “adaptation” component, JPL has been
able to reduce costs. The core component of the software is
verified once, by a central group, rather than by multiple
projects. Projects can then focus on verification of just the
adaptation part of the software. An additional cost saving
with this methodology has been that it has allowed JPL to
staff a multi-mission adaptation team where personnel can
move from one project to another with minimal start-up and
training time.

The automation scripts began development in the mid
1990’s. Faced with the Faster, Better, Cheaper mantra,
operations costs were forced to come down. Development
of an automatic process for generating, verifying, and
uploading commands had several benefits. One is that
remote users (e.g. scientists) could stay remote. A second
is that many of the steps needed to verify and uplink a
sequence could be run much more quickly than if people
were running them. The third is that much of the operations
staff was reduced because commanding could occur 24x7
without staff on shift.

This paper describes the architecture of the JPL multi-
mission sequencing system and the sequence automation
process, discusses the cost savings associated with both of
these changes.

1. Introduction

At JPL, the system used to develop the sequences that
contain the commands sent to the JPL interplanetary
spacecraft consists of several different stages, sequence
planning, sequence verification, and sequence translation
into spacecraft understandable binary. The software used to
support these activities is known as SEQ.

SEQ consists of about a dozen different program sets. It is
not necessary for a project to use all of the SEQ programs.
Interface specifications for each program are well defined,
and if a project chooses to use a separate program for one
part of the system, it can easily be accomplished. Most
projects do have their own components in some part of the
uplink process.

Two of the SEQ programs are used by scientists to plan and
verify science observations. The first science-planning
program is called Science Opportunity Analyzer (SOA).
SOA has a very user-friendly interface that allows scientists
and other planners to exercise trade studies and preliminary
design for science observations. Search engines that will
locate times of interest such as fly-bys, bow-shocks,
occultations, angles, periapsis and apparent diameter are
available. Once these opportunities have been located, the
user can design a specific observation (e.g. Continuous
Scan, Roll Scan, Start Stop Mosaic, Stare). Criteria such as
the primary target, secondary target, target offsets, duration,
primary observer, and secondary observer are entered.
Constraint checking for activity duration, distance,
exclusion zones, and hardware limits is also completed by
SOA. SOA is such a flexible tool that lander missions are
also considering the use of SOA to identify communication
times with orbiting assets. The second program is called
Planetary Observation Instrument Targeting and Encounter
Reconnaissance (SEQ_POINTER, or just POINTER).
Once the preliminary science design has been completed,
the observations are passed to POINTER, where detailed
calculations and constraint checking are completed. There
are usually two differences between POINTER and SOA.
The first is that SOA works at the activity level, but
POINTER works at the command level. The second is that
POINTER usually has a more complex spacecraft and/or
turn model associated with its calculations than SOA. It is
possible to implement the more sophisticated models in
SOA, however this would slow down calculations. Since
SOA is currently being used for preliminary science design
activities, the more complicated models are not necessary at
that stage of the planning.

The SEQ program used to monitor engineering resources at
the activity level is called Activity Plan Generator
(APGEN). The engineering planning is done to ensure that
resources such as power, data storage, or reaction wheel
revolutions per minute are not exceeded. ApGen allows the
user, more often a mission planner or a spacecraft engineer,
rather than a scientist, to plan activities while monitoring
resource constraints. Desired activities might be Deep
Space Network (DSN) contacts, science activities, and
general engineering activities. The resources monitored
might be solid-state recorder space, propellant, and battery
state of charge. The model fidelity of both the activities
and the resources increases during mission development.

For example, in the beginning of mission development,
science activities might be assumed to use an assumed level
of power and output an assumed level of data on the solid-
state recorder. As the mission design becomes more exact,
different science activities may be modeled with different
power and data volume needs. Information about science
activities might even come from SOA or POINTER since
communications exist between these programs. ApGen
also contains a scheduler, which will allow a user to define
activities, some of which are fixed in time (e.g. DSN
contacts), and additional desired activities. The scheduler
will place activities on the timeline so that resources are not
violated. The scheduler will also show which of the desired
activities could not be scheduled. The user can then
reprioritize activities (only two Type A activities and three
Type B activities) or add additional activities that would
alleviate resource constraints (add an additional DSN
contact so that space on the data recorder becomes
available). One project has integrated a more sophisticated
planner into ApGen. Work has also been proposed to
modify the structure of ApGen to make it much easier to
integrate whatever planner is desired.
SEQ offers a tool that will assist the user in developing
sequences. Sequence Generator (SeqGen) is a tool that has
three functions. One function is to help the user generate a
sequence. A GUI is provided that allows the user to select
a command and input or select parameters for a command.
Regardless of whether the SeqGen GUI is used to generate
sequences, SeqGen does provide command syntax
checking, such as the number of input parameters and the
parameter types. The second function is to integrate
sequences. These sequences might be any combination of
background, science, or engineering sequences. The third
function is to verify sequences. The most common use of
SeqGen is for sequence integration and verification, since
sequences are often developed by other programs (such as
ApGen, POINTER, or SOA) or tools that scientists or
spacecraft engineers have created to meet specific needs.
When sequences are integrated, it is imperative to check
that mission rules and flight rules are not violated by the
combined sequences. Projects try to implement as much
rule checking as possible in SeqGen because it is much
more efficient and less tedious than using manual
procedures to check the rules. Historically, the mission and
flight rules checked by SeqGen were more timing related,
such as “The cat bed heaters must be turned on 5 minutes
before the thrusters are fired,” or “Once the spacecraft has
been launched, the mission phase may never be set to pre-
launch.” SeqGen has also been used for checking
commands against spacecraft states, such as “The command
may be used only while the spacecraft is nadir pointed,” or
“The command may not be issued while the spacecraft is in
eclipse.” However, more recently, SeqGen has also been
used to check for resource constraints using models at the
command level. An example of this is using an externally
provided power model to monitor the battery state of

charge. Another project has integrated a sophisticated slew
model to provide time estimates for slew activities. Output
from SeqGen consists of a predicted events file, a human
readable spacecraft sequence file that contains the
commands that will be sent to the spacecraft, a file
containing spacecraft states, and a log file.

Other SEQ programs are used to translate the human
readable spacecraft sequence file into the binary which is
sent to the spacecraft, a program that is used to assist
project adapters build model files needed by SeqGen, a
program which parses predicted events data, allowing the
user to generate strips of data the user deems interesting,
and spacecraft sequence of events files.

2. Multi-mission Architecture

When the Faster, Better, Cheaper mantra became a
requirement, the strategy of software reuse became popular.
Since the time and money involved in generating sequence
software is significant, a framework was developed that
allowed for sequence software reuse was developed. SEQ
was partitioned into two parts, Core and Adaptation. SEQ
Core software has the ability to perform a specific function.
SEQ Adaptation provides project specific components that
rely on core functions.

An analogy for this sort of division can be seen in tool used
for word processing. In SEQ terminology, the word
processing software is piece of Core Software. The word
processing software allows the user the ability to pick
various font types (Times, Ariel, Courier, and Symbol), font
representations (bold, italic, and underlined), and paragraph
alignments (left justified, right justified, and center
justified). And it is the user (the Adapter) who writes the
text, chooses the styles and decides the purpose of the
document (a letter or a memo).

An example of core functionality is SeqGen’s ability to
check flight rules. Adapters model spacecraft states. When
a spacecraft command causes a rule to be violated, SeqGen
issues an alert. Similarly, adapters model spacecraft
resources, and ApGen issues an alert when an activity
causes a spacecraft resource to go outside established
limits.

3. Multi-mission Architecture Cost Savings

The multi-mission architecture offers advantages and cost
savings through several different ways. The single biggest
cost savings comes from the fact that capability is both
implemented and verified only once. Another cost savings
comes from team familiarity with the software. A third
advantage is that teams (flight software development and
Assembly, Test and Launch Operations teams) are ready to
hit the ground running because a large portion, if not all, of

the capability needed is already available in the software.
Another advantage is that the software is inherently more
reliable because characteristics are well known (and don’t
appear as surprises).

The multi-mission architecture provides cost savings to
projects because many of the needed capabilities are
already developed. One recent project needed only very
small (less than two work months) additional capability
added to the ground system uplink software. The cost
savings from the development of the core software are not
always immediately apparent to projects. One recent
project thought the costs for the adaptation of the multi-
mission software were high until it estimated from
historical databases and models how much it would take to
start from scratch and implement project specific software.
This project even needed a significant number of changes
implemented in the core software to support some of the
mission operations desires. Given the number of changes
needed by this project, this would have been a case that
tested the limits of the value of already having software in
place with part of the capability.

A Return On Investment was done on the overall savings of
the entire AMMOS system. The first part of the cost
savings in is that development does not have to be done.
Mission specific adaptation costs of multi-mission tools
were calculated to be ~15% of mission specific
development costs. Very simply, project cost savings are
equal to the amount of money it would have taken to
develop their ground system not using AMMOS multi-
mission software, minus the project adaptation costs, minus
the cost of any changes that need to be added to the core
multi-mission software.

Cost_Savings = Cost_No_Reuse – (Cost_Adaptation +
Project_Specific_Changes)

The models used estimate this savings consist of low-cost,
medium-cost, and flagship missions. The second part of the
cost savings is in software verification. Software
verification has to be completed only once for a majority of
the functionality. Projects still must verify the project
specific adaptation (command parameters, rule modeling,
etc.), but this would have to be done regardless of whether
AMMOS multi-mission software is used. Core software
verification in SEQ at both the program level and the
subsystem level currently takes about 6 weeks with some of
the program level and subsystem level testing done in
parallel. On current missions, a single project’s adaptation
specific testing is completed in less than a week. During
the Y2K frenzy, 9 projects were using multi-mission
software, and rather than 9 separate verification efforts,
only one had to be done. The overall Return on Investment
study, which includes costs to maintain the software, new
capability development (that is considered to be a multi-

mission capability), continuous improvement programs,
systems engineering, development platform costs
(development software licenses, hardware replacement,
software development and test facilities), and configuration
management found that $1 invested in AMMOS multi-
mission software saves NASA Code S (projects) $3. [1]

A second cost savings comes from team familiarity with
software. This comes in two flavors. The first flavor is that
personnel from one project can easily transition to another
project because the software used is identical. While
project specific implementations (rules, models, etc.) may
vary, the framework and syntax of the software is known.
This also means that it is easy to move staff from one
project to another during critical events (additional support
to meet a launch or other mission critical deadline, during
adaptation intensive times caused by planned or unplanned
events, etc.) The second flavor is that personnel within the
project use the same software in all phases of the mission,
so transition costs from Development to Operations phases
do not exist.

An additional advantage in the use of multi-mission
software is that Flight Software (FSW) and Assembly, Test,
and Launch Operation (ATLO) teams can hit the ground
running. A major portion of the needed capability exists.
A ground system implementation with a simple NOOP
command can be developed in less than a week. Similarly,
once a few commands are known, simple ground system
implementations can rapidly developed to support rapid
prototype testing of FSW and in ATLO. FSW and ATLO
teams have even been trained to convert Command
Dictionaries into use by SeqGen when rapid development is
done.

The last advantage of multi-mission software discussed in
this paper is that the ground system software is more
reliable and offers more functionality than could be
obtained with single use ground system software.
Continuous maintenance, which includes bug fixes and
small enhancements, results in highly reliable tools.
Projects also often get more functionality using multi-
mission software than could be obtained with mission
specific (single use) ground software. Since a large portion
of capability is on the shelf already, projects can choose to
add extra features that could not have been implemented
because of time or monetary constraints. [1].

4. Automated Sequence Processor

The Automated Sequence Processor (ASP) is a collection of
scripts that were developed to automate the sequence
generation process during the aerobraking phase of the
Mars Global Surveyor mission. Aerobraking is used to
gradually lower the spacecraft into a circular orbit. This is
done with “drag pass” sequences. The spacecraft is

lowered into the atmosphere. However, because the
Martian atmosphere is variable (thermal changes cause it to
bloom), the orbit of the spacecraft must be continually
monitored to make sure the spacecraft does not go too far in
or out of the atmosphere. The aerobraking maneuvers to
raise or lower the orbit can be commanded every orbit.
Science observations to monitor the orbit may also be
performed every orbit. As the spacecraft orbit gets lower,
orbit times shorten, and the time for each orbit can be as
low as two hours. That means that the new command load
must be prepared in a very short time. Before the ASP
automation process was begun, it took two people
approximately two hours to generate the necessary
command products for a single command request file
containing multiple commands. In order to support the
aerobraking process, something had to be done to speed up
the sequence generation process.

Although the automation process was begun to support the
aerobraking requirements of Mars Global Surveyor in the
mid 1990s, many other benefits of the effort have become
apparent. One of the most obvious is that operations team
costs have gone down because fewer people are needed to
support a mission. Through additional development on the
ASP, capability has been added so that remote users such as
spacecraft contractors or science teams can work from their
home institutions. Another advantage is that automatic
verification of part of the sequence generation process is
more reliable. Finally, some types of commanding can be
done completely automatically, meaning the operations
staff was reduced because commanding could occur 24x7
without staff on shift.

Prior to the implementation of the ASP, a requestor (a
principal investigator or spacecraft team member) would
submit a command file to the Sequence Team for
processing. Two project sequence team operations
members would manually use team procedures and
software tools to generate a validated the necessary uplink
products. This took an average of two hours. Currently,
the requestor submits the command file to the ASP for
processing. The ASP executes all necessary tasks to
generate the uplink products for transmission. Processing
though the ASP in all circumstances except one special set
of cases of processing takes approximately five minutes. In
the one special set of circumstances, very special
commanding is being done, so the additional verification
steps are taken to make sure that the command load will not
harm the spacecraft. [2].

A trigger mechanism is used to kick off the ASP
processing. The original trigger mechanism was an email
containing the file release form that holds information about
the command file that will be processed. Recently, this
trigger mechanism was replaced with a more robust

mechanism that involves publishing the file release form
information to a database that is periodically queried to see
if a new file has arrived. Once the command processing has
begun, scripts are use to mimic the manual generation
process. This includes incrementally checking product
generation. Command products are also stored on the
project database, and moved out to Deep Space Network for
eventual radiation. Many of the scripts used by the ASP are
the scripts that would have been used during manual
sequence generation. The ASP provides the glue to patch
the steps together, which consists primarily of verification
of steps completed as well as the criteria to determine
which step should come next. Naturally verification to
ensure a requestor is a legitimate user is also done.

Since the ASP allows users to submit command files from
remote sites, and the ASP does user verification, remote
users do not have to maintain a presence at Jet Propulsion
Laboratory (JPL) to complete commanding activities. This
saves a significant amount in travel expenses and greatly
improves the morale of remote users.

The ASP has an added safety benefit because much of the
checking is done via an automatic process that is less
susceptible to error than manual checking. In 2002,
approximately 9000 files were processed. Of those, there
were no command errors caused by ASP processing.
Eliminating some of the drudgery and difficulty of
verifying command products helps teams generate better
command products.

Finally, the automatic nature of the ASP allows
commanding to be done day or night by science teams
without sequence support staff on hand. Some types of
spacecraft commanding can also be done 24x7 without
sequence teams on hand.

5. Automated Sequence Processor Cost Savings

Implementation of the Automatic Sequence Processor has
provided cost savings in several different ways. The most
tangible ways have been a reduction in the size of Sequence
teams. Other intangible ways include better integrity of
command products and better freedom and morale for non-
JPL teams that commanding responsibilities. The ASP has
also allowed JPL to complete mission phases that could not
be completed without automation.

A Return On Investment was recently completed for the
Automatic Sequence Processor. The Return On Investment
included only the tangible cost savings of the reduction in
Sequence Team size. In 2002, since there were almost
9000 command files were processed through the ASP, this
would have required approximately 36,000 work hours
without the ASP. This is roughly $3.4 million dollars that
is not spent on Sequence teams every year. The cost of the

ASP was the initial expenditure, maintenance costs, and
upgrade costs done in the last year. The initial and upgrade
cost is approximately $250,000. Daily ASP maintenance is
also performed by the Sequence team at a cost of
approximately $40,000 per year. [2]

The Return On Investment calculation described above
does not include the adding different types of processing
capability to the ASP. Nor does it include the cost of
adding new projects to the ASP. If a new project wants to
use the ASP, and uses existing Sequence Team processes to
generate command files, it takes $10,000 - $20,000 to give
them ASP processing capability.

6. Conclusions

Two steps have been taken in the last several years to
reduce costs in the Uplink portion of the Ground Data
System used by JPL. The first step, converting to a multi-
mission architecture for the Sequencing software, has
offered not only reduced costs for subsequent projects, but
also improved reliability for projects. The second step,
implementing an Automated Sequence Processor, has
offered significant cost savings to projects while also
reducing processing errors.

The argument for using a multi-mission architecture
becomes more compelling for each additional project that is
expected to use the software. The implementation of an
Automated Sequence Processor can offer substantial
savings, even if it used by only one project.

References

[1] Klose, J. Charles. Advanced Multi-Mission Operations
System (AMMOS), Return On Investment Study Results.
May, 2002.

[2] Reichert, R., R. Brooks, L. Needels, R. Thomas.
Automated Sequence Process (ASP), Return on Investment.
August, 2002.

Acknowledgements

The research described in this publication was carried at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

	COST REDUCTIONS FROM MULTI-MISSION SEQUENCING SOFTWARE
	Laura Needels
	Acknowledgements

